CS6640 Computational Photography

6. Color science for digital photography

What visible light is

- One octave of the electromagnetic spectrum (380-760nm)

What color is

- Colors are the sensations that arise from light energy with different wavelength distributions
- Color is a phenomenon of human perception; it is not a universal property of light
- Roughly speaking, things appear "colored" when they depend on wavelength and "gray" when they do not.

Measuring light

- Salient property is the spectral power distribution (SPD)
the amount of light present at each wavelength
units: Watts per nanometer (tells you how much power you'll find in a narrow range of wavelengths)
for color, often use "relative units" when overall intensity is not important

The problem of color science

- Build a model for human color perception
- That is, map a physical light description to a perceptual color sensation

$?$

Perceptual

Physical

The eye as a measurement device

A simple light detector

- Produces a scalar value (a number) when photons land on it
this value depends strictly on the number of photons detected
each photon has a probability of being detected that depends on the wavelength
there is no way to tell the difference between signals caused by light of different wavelengths: there is just a number
- This model works for many detectors:
based on semiconductors (such as in a digital camera) based on visual photopigments (such as in human eyes)

A simple light detector

photons

$$
X=\int n(\lambda) p(\lambda) d \lambda
$$

Light detection math

- Same math carries over to power distributions
spectum entering the detector has its spectral power distribution (SPD), $s(\lambda)$
detector has its spectral sensitivity or spectral response, $r(\lambda)$

Light detection math

$$
X=\int s(\lambda) r(\lambda) d \lambda \quad \text { or } \quad X=s \cdot r
$$

- If we think of s and r as vectors, this operation is a dot product (aka inner product)
in fact, the computation is done exactly this way, using sampled representations of the spectra.
let λ_{i} be regularly spaced sample points $\Delta \lambda$ apart; then:

$$
\tilde{s}[i]=s\left(\lambda_{i}\right) ; \tilde{r}[i]=r\left(\lambda_{i}\right)
$$

this sum is very clearly a dot product

$$
\int s(\lambda) r(\lambda) d \lambda \approx \sum_{i} \tilde{s}[i] \tilde{r}[i] \Delta \lambda
$$

Cone Responses

- S,M,L cones have broadband spectral sensitivity
- S,M,L neural response is integrated w.r.t. $\boldsymbol{\lambda}$
we'll call the response functions r_{S}, r_{M}, r_{L}
- Results in a trichromatic visual system
- S, M, and L are tristimulus values

Cone responses to a spectrum s

$$
\begin{aligned}
S & =\int r_{S}(\lambda) s(\lambda) d \lambda=r_{S} \cdot s \\
M & =\int r_{M}(\lambda) s(\lambda) d \lambda=r_{M} \cdot s \\
L & =\int r_{L}(\lambda) s(\lambda) d \lambda=r_{L} \cdot s
\end{aligned}
$$

Colorimetry: an answer to the problem

- Wanted to map a physical light description to a perceptual color sensation
- Basic solution was known and standardized by 1930

Though not quite in this form-more on that in a bit

Wavelength (nm)
Physical

$$
\begin{aligned}
S & =r_{S} \cdot s \\
M & =r_{M} \cdot s \\
L & =r_{L} \cdot s
\end{aligned}
$$

Perceptual

Basic fact of colorimetry

- Take a spectrum (which is a function)
- Eye produces three numbers
- This throws away a lot of information!

Quite possible to have two different spectra that have the same S, M, L tristimulus values

Two such spectra are metamers

Pseudo-geometric interpretation

- A dot product is a projection
- We are projecting a high dimensional vector (a spectrum) onto three vectors
differences that are perpendicular to all 3 vectors are not detectable
- For intuition, we can imagine a 3D analog

3D stands in for high-D vectors
2D stands in for 3D
Then vision is just projection onto a plane

Pseudo-geometric interpretation

- The information available to the visual system about a spectrum is three values
this amounts to a loss of information analogous to projection on a plane
- Two spectra that produce the same response are metamers

Pseudo-geometric interpretation

- The information available to the visual system about a spectrum is three values
this amounts to a loss of information analogous to projection on a plane
- Two spectra that produce the same response are metamers

Basic colorimetric concepts

- Luminance
the overall magnitude of the the visual response to a spectrum (independent of its color)
corresponds to the everyday concept "brightness"
determined by product of SPD with the luminous efficiency function V_{λ} that describes the eye's overall ability to detect light at each wavelength
e.g. lamps are optimized to improve their luminous efficiency (tungsten vs.
fluorescent vs. sodium vapor)

Luminance, mathematically

- Y just has another response curve (like S, M, and L)

$$
Y=r_{Y} \cdot s
$$

$-r_{Y}$ is really called " V_{λ} "

- V_{λ} is a linear combination of S, M, and L

Has to be, since it's derived from cone outputs

More basic colorimetric concepts

- Chromaticity
what's left after luminance is factored out (the color without regard for overall brightness)
scaling a spectrum up or down leaves chromaticity alone
- Dominant wavelength
many colors can be matched by white plus a spectral color correlates to everyday concept "hue"
- Purity
ratio of pure color to white in matching mixture correlates to everyday concept "colorfulness" or "saturation"

Color reproduction

- Have a spectrum s; want to match on RGB monitor
"match" means it looks the same
any spectrum that projects to the same point in the visual color space is a good reproduction
- Must find a spectrum that the monitor can produce that is a metamer of s

Additive Color

LCD display primaries

Curves determined by (fluorescent or LED) backlight and filters

Spatial integration

Color reproduction

- Say we have a spectrum s we want to match on an RGB monitor
"match" means it looks the same
any spectrum that projects to the same point in the visual color space is a good reproduction
- So, we want to find a spectrum that the monitor can produce that matches s
that is, we want to display a metamer of s on the screen

Color reproduction

- We want to compute the combination of R, G, B that will project to the same visual response as s.

Color reproduction as linear algebra

- The projection onto the three response functions can be written in matrix form:

$$
\left[\begin{array}{c}
S \\
M \\
L
\end{array}\right]=\left[\begin{array}{l}
-r_{S}- \\
-r_{M}- \\
-r_{L}-
\end{array}\right]\left[\begin{array}{l}
\mid \\
s \\
\mid
\end{array}\right]
$$

or,

$$
V=M_{S M L} s
$$

Color reproduction as linear algebra

- The spectrum that is produced by the monitor for the color signals R, G, and B is:

$$
s_{a}(\lambda)=R s_{r}(\lambda)+G s_{g}(\lambda)+B s_{b}(\lambda)
$$

- Again the discrete form can be written as a matrix:

$$
\left[\begin{array}{c}
\mid \\
s_{a} \\
\mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{R} & s_{G} & s_{B} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=
$$

or,

$$
s_{a}=M_{R G B} C
$$

Color reproduction as linear algebra

- What color do we see when we look at the display?

Feed C to display
Display produces s_{a}
Eye looks at s_{a} and produces V

$$
\begin{aligned}
& V=M_{S M L} M_{R G B} C \\
& {\left[\begin{array}{c}
S \\
M \\
L
\end{array}\right]=\left[\begin{array}{ccc}
r_{S} \cdot s_{R} & r_{S} \cdot s_{G} & r_{S} \cdot s_{B} \\
r_{M} \cdot s_{R} & r_{M} \cdot s_{G} & r_{M} \cdot s_{B} \\
r_{L} \cdot s_{R} & r_{L} \cdot s_{G} & r_{L} \cdot s_{B}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]}
\end{aligned}
$$

Color reproduction as linear algebra

- Goal of reproduction: visual response to s and s_{a} is the same:

$$
M_{S M L} \tilde{s}=M_{S M L} \tilde{s_{a}}
$$

- Substituting in the expression for s_{a},

$$
\begin{aligned}
& M_{S M L} \tilde{s}=M_{S M L} M_{R G B} C \\
& C=\underbrace{\left(M_{S M L} M_{R G B}\right)^{-1} M_{S M L} \tilde{s}}_{\text {color matching matrix for RGB }}
\end{aligned}
$$

These curves are the color-matching functions for the 1931 standard observer, The average results of 17 color-normal observers having matched each wavelength of the equal-energy spectrum with primaries of $435.8 \mathrm{~nm}, 546.1 \mathrm{~nm}$, and 700 nm .

- We now know how to match any color from the real world on a display
- We don't need to know the whole spectrum, only the projections onto S, M, and L response functions
- There is then a simple linear procedure to work out the combination of any 3 primaries to match the color
- We now know how to match any color from the real world on a display
- We don't need to know the whole spectrum, only the projections onto S, M, and L response functions
- There is then a simple linear procedure to work out the combination of any 3 primaries to match the color

Questions?

Reflection from colored surface

Color constancy

Color constancy

Chromatic adaptation

- Objects have different spectra under different illuminants
...but your brain has no problem recognizing them anyway
- The human visual system automatically detects the illuminant color and adjusts for it
so the same object (usually) looks (roughly) the same color under a wide range of illumination conditions
this happens at a low level so you don't even notice
- But color constancy is not perfect
...and indeed can't be, with just 3 color receptors
examples: sweater looks nice with pants in your closet, then looks different once you get out in the daylight

Chromatic adaptation

- Objects have different spectra under different illuminants
...but your brain has no problem recognizing them anyway
- The human visual system automatically detects the illuminant color and adjusts for it
so the same object (usually) looks (roughly) the same color under a wide range of illumination conditions
this happens at a low level so you don't even notice
- But color constancy is not perfect
...and indeed can't be, with just 3 color receptors
examples: sweater looks nice with pants in your closet, then looks different once you get out in the daylight

Questions?

Color spaces

- Need three numbers to specify a color
but what three numbers?
a color space is an answer to this question
- Stored numbers often map nonlinearly to intensity of primary
enables nonuniform quantization (smaller quantization steps in dark) common scheme is $R=\left(n_{R} / 255\right)^{r}$
- Common example: monitor RGB
define colors by what R, G, B signals will produce them on your monitor

$$
\text { (in math, } s=R \mathbf{R}+G \mathbf{G}+B \mathbf{B} \text { for some spectra } \mathbf{R}, \mathbf{G}, \mathbf{B} \text {) }
$$

device dependent (depends on gamma, phosphors, gains, ...)
if I choose RGB by looking at my monitor and send it to you, you may not see the same color also leaves out some colors (limited gamut), e.g. vivid yellow

Standard color spaces

- Standardized RGB (sRGB)
makes a particular monitor RGB standard
standard quantization curve is almost gamma $=2.2$
other color devices simulate that monitor by calibration
sRGB is usable as an interchange space; widely adopted today
gamut is still limited
- Other RGB spaces

Adobe RGB (more saturated primaries than sRGB - wider gamut)

A universal color space: $X Y Z$

- Standardized by CIE (Commission Internationale de l'Eclairage, the standards organization for color science)
- Based on three "imaginary" primaries X, Y, and Z

$$
\text { (in math, } s=X \mathbf{X}+Y \mathbf{Y}+Z \mathbf{Z} \text {) }
$$

imaginary $=$ only realizable by spectra that are negative at some wavelengths
any stimulus can be matched with positive X, Y, and Z
separates out luminance: \mathbf{X}, \mathbf{Z} have zero luminance, so Y tells you the luminance by itself

The 1931 standard observer, as it is usually shown.

Separating luminance, chromaticity

- Luminance: Y
- Chromaticity: x, y, z, defined as

$$
\begin{aligned}
x & =\frac{X}{X+Y+Z} \\
y & =\frac{Y}{X+Y+Z} \\
z & =\frac{Z}{X+Y+Z}
\end{aligned}
$$

since $x+y+z=1$, we only need to record two of the three usually choose x and y, leading to (x, y, Y) coords

Chromaticity Diagram

Chromaticity Diagram

Color Gamuts

- Monitors/printers can't produce all visible colors
- Reproduction is limited to a particular domain
- For additive color (e.g. monitor) gamut is the triangle defined by the chromaticities of the three primaries.

RGB limitations

- http://dba.med.sc.edu/price/irf/Adobe tg/manage/ images/gamuts.jpg
- http://www.petrvodnakphotography.com/Articles/ ColorSpace.htm

Color sensing

- Sensor is like eye
gives you projection onto a 3D (or >3D) space
but it is the wrong space!
- Problems with measured data
we have RGB, but not the right RGB
projection onto sensitivities, not coefficients for primaries (always)
projection onto wrong space (always in practice)
results depend strongly on illuminant (help!)

Sensor color properties

- Like eye, key property is the spectral sensitivity curves

TRUESENSE

imaging, inc.
Color with Microlens Quantum Efficiency

[^0]
Camera color problem

- Given camera response, determine corresponding visual response
- This guess has to involve assumptions about which reflectance spectra are more likely
- Mathematical approach: assume spectra in fixed subspace
- Or, more often, just derive a transformation empirically

Camera color problem

- Given camera response, determine corresponding visual response
- This guess has to involve assumptions about which reflectance spectra are more likely
- Mathematical approach: assume spectra in fixed subspace
- Or, more often, just derive a transformation empirically

Camera color problem

- Given camera response, determine corresponding visual response
- This guess has to involve assumptions about which reflectance spectra are more likely
- Mathematical approach: assume spectra in fixed subspace
- Or, more often, just derive a transformation empirically

Camera color problem

- Given camera response, determine corresponding visual response
- This guess has to involve assumptions about which reflectance spectra are more likely
- Mathematical approach: assume spectra in fixed subspace
- Or, more often, just derive a transformation empirically

Camera color problem

- Given camera response, deterinine corresponding visual response guess
- This guess has to involve assumptions about which reflectance spectra are more likely
- Mathematical approach: assume spectra in fixed subspace
- Or, more often, just derive a transformation empirically

Camera color rendering via subspace

- Assume spectrum s is a combination of three spectra

$$
\left[\begin{array}{l}
\mid \\
s \\
\mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

- Work out what combination it is

$$
\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\left(\left[\begin{array}{l}
-r_{R}- \\
-r_{G}- \\
-r_{B}-
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\right)\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

same math as additive color matching

- Project that combination onto visual response

$$
\left[\begin{array}{c}
S \\
M \\
L
\end{array}\right]=\left[\begin{array}{l}
-r_{S}- \\
-r_{M}- \\
-r_{L}-
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\left(\left[\begin{array}{l}
-r_{R}- \\
-r_{G}- \\
-r_{B}-
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

Camera color rendering via subspace

- Assume spectrum s is a combination of three spectra

$$
\left[\begin{array}{l}
\mid \\
s \\
\mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

- Work out what combination it is

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left(\left[\begin{array}{l}
-r_{R}- \\
-r_{G}- \\
-r_{B}-
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

same math as additive color matching

- Project that combination onto visual response

$$
\left[\begin{array}{c}
S \\
M \\
L
\end{array}\right]=\left[\begin{array}{l}
-r_{S}- \\
-r_{M}- \\
-r_{L}-
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\left(\left[\begin{array}{l}
-r_{R}- \\
-r_{G}- \\
-r_{B}-
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{1} & s_{2} & s_{3} \\
\mid & \mid & \mid
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

Empirical color transformation

- Baseline method: use Macbeth Color Checker
a set of square patches of known color
(these days you buy the MCC from X-Rite)
- Procedure

1. Photograph the color checker under uniform illumination
2. Measure the camera-RGB values of the 24 squares
3. Look up the $X Y Z$ colors of the 24 squares
4. Use linear least squares to find a 3×3 matrix that approximately maps the camera responses to the correct answers

$$
\min _{M} \| C_{3 \times 24} \quad \underset{3 \times 3}{ } \underset{3 \times 24}{ }
$$

White balancing

- Problem with previous slide
the camera-RGB colors depend on the illuminant
the matrix M only works for the illuminant that was used to calibrate
- Solutions?
calibrate separately for every illuminant?
correct for illuminant first, then apply matrix!
- Hypothesis of von Kries: eye accounts for illuminant by simply scaling the three cone signals separately
some evidence this is a reasonable model for the eye
leads to "von Kries transform": multiply by a diagonal matrix

Range of illuminants

Illuminant A
$(x, y)=(0.4476,0.4074)$
(Incandescent source, $T=2856 \mathrm{~K}$)
Illuminant B
$(x, y)=(0.3484,0.3516)$
(Direct sunlight, $T=4870 \mathrm{~K}$)
Illuminant C
$(x, y)=(0.3101,0.3162)$
(Overcast source, $T=6770 \mathrm{~K}$)
Illuminant D_{65}
$(x, y)=(0.3128,0.3292)$
(Daylight, $T=6500 \mathrm{~K}$)
Illuminant E (equal-energy point) $(x, y)=(0.3333,0.3333)$

Fig. 18.3. Chromaticity diagram showing planckian locus, the standardized white Illuminants $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}_{65}$, and E , and their color temperature (after CIE, 1978).

White balancing steps

1. Determine the camera RGB of the illuminant (up to scale)
professional/studio setting: photograph a gray card
poor man's version: find something gray in the image
alternative: let user tell the camera (tungsten, daylight, ...)
practical solution: Auto White Balance software guesses
2. Divide all the pixel values by the illuminant RGB
undetermined scale factor
maybe fix luminance to 1
maybe scale lowest channel of illuminant to 1

- Now neutral colors are neutral!
this is unbelievably important for getting nice color

Putting it together: color processing

- Calibrate your color matrix using a carefully white-balanced image
when solving for M, constrain to ensure rows sum to 1
(then M will leave neutral colors exactly alone)
- For each photograph:

1. determine illuminant
2. apply von Kries
3. apply color matrix
4. apply any desired nonlinearity
5. display the image!

raw sensor color

white balanced raw sensor color

white balanced and matrixed to sRGB

[^0]: Figure 5: Quantum Efficiency Spectrum for Color Filter Array Sensors

